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Abstract
We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math.
Gen. 15 781) concerning the integral operator appearing in the intermediate
long wave equation. We explain how this is resolved using the perturbative
symmetry approach introduced by one of us with Mikhailov. By solving a
certain functional equation, we prove that the intermediate long wave equation
and the Benjamin–Ono equation are the unique integrable cases within a
particular class of integro-differential equations. Furthermore, we explain how
the perturbative symmetry approach is naturally extended to treat equations on
a periodic domain.

PACS number: 03.65.Ge

1. Introduction

The propagation of nonlinear internal waves along the interface of two fluids of different
density is described by several different nonlinear equations. In the deep-fluid limit, the
relevant equation is the Benjamin–Ono equation [3, 13], given by

ut + 2uux + H(uxx) = 0, (1)

where the symbol H denotes the Hilbert transform operator

H(u(x)) := 1

π
PV

∫ ∞

−∞

u(y)

y − x
dy. (2)

The Korteweg–de Vries (KdV) equation, on the other hand, pertains to the shallow-fluid limit:

ut + 6uux + u3x = 0. (3)

1 On leave from Landau Institute for Theoretical Physics, Moscow.
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For the case of nonlinear waves in a fluid of finite depth Joseph [9] derived the intermediate
long wave equation (ILW), which is given as

ut + δ−1ux + 2uux + T (uxx) = 0, (4)

in terms of the coth transform

T (u(x)) := − 1

2δ
PV

∫ ∞

−∞
coth

( π

2δ
(x − y)

)
u(y) dy. (5)

The ILW equation is intermediate between Benjamin–Ono and KdV, in the sense that the limit
δ → ∞ yields (1), while δ → 0 gives (3). The remarkable fact is that all three equations (1),
(3), (4) are integrable in the sense that they admit multi-soliton solutions [6] and are solvable
by the inverse scattering transform (see, for example, [2]).

In the work [1] of Ablowitz et al the ILW equation was considered on a periodic domain
rather than for the case of waves on the infinite domain decaying at infinity. The periodic
case requires an alternative definition of the operator T compared with (5), which we discuss
below. Simple periodic solutions of the ILW were treated extensively by Parker [14]. An
important open problem, stated in [1], concerns the classification of all integrable equations
of the form (4), where T is an integral operator satisfying the following conditions:

T (uT v + vT u) = (T u)(T v) − uv, (6)∫ ∞

−∞
(uT v + vT u) dx = 0. (7)

In [1] it is stated that (6) and (7) arise as necessary conditions for equation (4) to have infinitely
many conservation laws, as obtained on the infinite domain in [17]. Moreover, the authors
of [1] verify that the conditions are satisfied by the coth transform operator (5) even in the
periodic case, by writing T in terms of a Fourier series.

The purpose of this letter is to present the general solution to the problem stated by
Ablowitz et al, as well as explaining how it can be derived in a straightforward way in the
framework of the perturbative symmetry approach [11].

Let us assume that the operator T has the Fourier symbol if̂ (k), so that

T (u(x)) = i
∫ ∞

−∞
f̂ (k)û(k) eikx dk,

where the above is interpreted as a principal value (PV) integral where necessary, and the hat
denotes the Fourier transform

û(k) = 1

2π

∫ ∞

−∞
u(x) e−ikx dx.

Then writing the first condition (6) in terms of Fourier integrals over the whole real line,
dividing by i2 = −1 and symmetrizing gives∫ ∫

f̂ (k + �)(f̂ (k) + f̂ (�))û(�)v̂(k) ei(k+�)x dk d�

=
∫ ∫

(f̂ (k)f̂ (�) + 1)û(�)v̂(k) ei(k+�)x dk d�

for any û, v̂, which immediately yields the functional equation

f̂ (k + �)(f̂ (k) + f̂ (�)) = f̂ (k)f̂ (�) + 1 (8)
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for the function f̂ . The second condition (7) is simply the requirement that the operator T
should be skew-symmetric. To see this in terms of f̂ , rewrite (7) as

0 = i
∫ ∫ ∫

(û(�)v̂(k − �) + v̂(�)û(k − �))f̂ (k − �) eikx dk d� dx

= 2π i
∫ ∫

(û(�)v̂(k − �) + v̂(�)û(k − �))f̂ (k − �)δ(k) dk d�

= 2π i
∫

û(�)v̂(−�)(f̂ (−�) + f̂ (�)) d�,

whence

f̂ (�) + f̂ (−�) = 0.

Hence the function f̂ must be odd.
It is simple to show that the general odd solution of the functional equation (8) is just

f̂ (k) = coth(δk), (9)

where δ is an arbitrary parameter. (The proof is presented in the next section below.) This
includes the solution

f̂ (k) = sgn(k) (10)

as the limiting case δ → ∞. Solution (9) just gives the Fourier symbol of the coth transform
(5), corresponding to the ILW equation (4), while the limiting case (10) produces the Hilbert
transform (2) appearing in the Benjamin–Ono equation (1). Hence if the operator T is
constrained to satisfy conditions (6) and (7), then the ILW equation and the Benjamin–Ono
equation are the only integrable evolution equations of the form (4). These conditions are
much more stringent than the requirement that [T , ∂x] = 0, which is sufficient to ensure
Darboux covariance of an associated linear system [10].

In the following section we show how the functional equation (8) may be derived
immediately as a necessary condition of integrability within the perturbative symmetry
approach. After that we present a short proof that the general odd solution of (8) is given by
(9) (see also [4]).

2. Perturbative symmetry approach and the functional equation

Let us consider the equation (4), where the operator T has the Fourier symbol if̂ (k), within
the framework of the perturbative symmetry approach [11]. After removing the linear term
δ−1ux from (4) by means of a Galilean transformation, the symbolic representation of the
equation reads as

ut = uω(k1) +
u2

2
a(k1, k2) ≡ F, (11)

where

ω(k) = −ik2f̂ (k), a(k1, k2) = −2(k1 + k2). (12)

Observe that in (11) the symbol u stands for the Fourier transform, and we write the
wavenumber k in place of ik, consistent with the notation in [11]; this means that ω(k)

differs by a factor of i, and is missing a linear term, compared to the physical dispersion
relation for water waves [6].

In the perturbative symmetry approach it is supposed that symmetries and local
conservation laws of equation (4), if they exist, belong to a proper extension of a differential



L402 Letter to the Editor

ring. To construct this, consider a ring R[u] of differential polynomials over C, generated by
u and its x-derivatives and take the sequence of ring extensions

R0
T = R[u],R1

T = R0
T

⋃
T

(
R0

T
)
, . . . ,Rn+1

T = Rn
T

⋃
T

(
Rn

T
)
, . . . , (13)

where the set T
(
Rn

T
) = {

T (a), a ∈ Rn
T
}

and the horizontal line denotes ring closure. Every set
Rn

T is a ring and n indicates the nesting depth of the operator T . The symbolic representation
of the extended ring may be constructed as follows. Suppose a is an element of the ring
R[u], of degree m, and its symbolic representation is a → uma(k1, . . . , kn). Then to T (a)

corresponds a symbol iumf̂ (k1 + · · · + kn)a(k1, . . . , kn).
The main theorem of the perturbative symmetry approach states that if equation (4)

possesses an infinite hierarchy of higher symmetries from the extended ring then there exists
a formal recursion operator �, with symbol

� = p + uφ1(k1, p) + u2φ2(k1, k2, p) + u3φ3(k1, k2, k3, p) + · · · , (14)

which satisfies the equation

�t = [F∗,�], (15)

where F∗ denotes the Fréchet derivative of the right-hand side of (11). Moreover, all
the functions φn(k1, . . . , kn, p) must be quasilocal, i.e. the coefficients of their asymptotic
expansion in p as p → ∞ are of the form

φm(k1, . . . , km, p) =
∑
l�s

φml(k1, . . . , km)pl, (16)

where each umφml(k1, . . . , km) must belong to the symbolic representation of the extended
ring. This statement suggests necessary integrability conditions for the equation (4).

Proposition 1. Let f̂ (k) → 1, faster than any power of k−1, as k → +∞. Then if the
coefficients φ1(k1, p), φ2(k1, k2, p) of the formal recursion operator (14) for equation (4) are
quasilocal, the function f̂ (k) must satisfy the functional equation (8).

Proof. From (15) it follows that functions φ1(k1, p), φ2(k1, k2, p) are given by the following
formulae:

φ1(k1, p) = k1a(k1, p)

ω(k1 + p) − ω(k1) − ω(p)
, (17)

φ2(k1, k2, p) = N2(k1, k2, p)

ω(k1 + k2 + p) − ω(k1) − ω(k2) − ω(p)
, (18)

where

N2(k1, k2, p) = [
1
2φ1(k1 + k2, p)a(k1, k2) + 〈φ1(k1, p + k2)a(k2, p)

− a(k1, p + k2)φ1(k2, p)〉]
with the triangular brackets 〈,〉 denoting symmetrization over the arguments k1, k2. Taking
into account (12) we obtain for φ1(k1, p)

φ1(k1, p) = − 2k1(k1 + p)

i(k1 + p)2f̂ (k1 + p) − ik2
1 f̂ (k1) − ip2f̂ (p)

= i(1 + k1/p)

1 + 1
2k1(1 − f̂ (k1))/p + O(p−∞)

, as p → +∞,
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where we substituted in the asymptotics f̂ (k1 + p) = 1 + O(p−∞), f̂ (p) = 1 + O(p−∞). It
is clear that φ1(k1, p) is quasilocal. The expansion of φ2(k1, k2, p) in p when p → ∞ is of
the form

φ2(k1, k2, p) = φ2,−2(k1, k2)p
−2 + φ2,−3(k1, k2)p

−3 + φ2,−4(k1, k2)p
−4 + · · · , (19)

where the symbols u2φ2,−2(k1, k2) and u2φ2,−3(k1, k2) belong to the symbolic representation
of the extended ring, while the coefficient φ2,−4(k1, k2) has the form

φ2,−4(k1, k2) = g(k1, k2)

k1 + k2
, (20)

with u2g(k1, k2) being the symbol of an element of the extended ring. (We do not present the
explicit expressions here since they are quite large.) Due to the denominator k1 +k2, in general
the function φ2,−4(k1, k2) will not correspond to an element of the extended ring and is the
obstacle to integrability. To overcome this obstacle, k1 + k2 must divide the function g(k1, k2)

(considered as a polynomial in k1, k2 with coefficients in terms of f̂ ), and the divisibility
conditions are given precisely by (8) with k = k1 and � = k2. The proposition is proved. �

Remark. It is also possible to prove the same result under the slightly more general assumption
that f̂ (k) ≈ 1 +

∑∞
j=1 cj k

−j as k → +∞. After applying a Galilean transformation to the
equation (4), the term c1/k can be removed, and then the conditions on φ2,−4 are the same as
the above.

Proposition 2. The most general odd solution to (8) that is analytic everywhere apart from
the origin is given by (9) or (10). The only even solution is f̂ (k) = 1 (constant).

Proof. To solve the functional equation (8) when f̂ is odd, set � = −k + h, and take the limit
h → 0 to obtain

lim
h→0

f̂ (h)(f̂ (k) + f̂ (−k + h)) = 1 − f̂ (k)2. (21)

Thus if the upper/lower limits limh→0± f̂ (h) are both finite then the left-hand side of (21) is
zero, which gives f̂ (k) = ±1 for all k, and then (up to an overall sign) the solution is given by
(10). On the other hand, if f̂ (h) becomes unbounded as h → 0, then (assuming analyticity)
the limit in (21) gives

δ−1f̂
′
(k) = 1 − f̂ (k)2 with δ = ( lim

h→0
hf̂ (h))−1. (22)

In that case the unique odd solution of the differential equation (22), having the required
simple pole at the origin, is precisely (9). If we consider the case when f̂ is even instead, then
setting � = ±k in turn yields

2f̂ (2k)f̂ (k) = 1 + f̂ (k)2 = 2f̂ (0)f̂ (k)

whence f̂ (2k) = f̂ (0), constant, and it immediately follows that f̂ (k) = 1 for all k. �

Remark. An alternative proof is furnished by the substitution f̂ (k) = (1 + E(k))/(1 −E(k)),
leading to E(k) satisfying the functional equation for the exponential. This implies that there
are no solutions of (8) with indefinite parity. However, the solution (10) does not arise so
naturally via this method.

Hence skew-symmetric operators T , satisfying (6) and (7), yield integrable equations of
the form (4) as isolated by the perturbative symmetry approach. Moreover, the Benjamin–Ono
and ILW equations are the only such equations having infinitely many conservation laws (and
solvable by the inverse scattering transform). We should remark that with the even solution
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f̂ ≡ 1 the equation (4) is (up to scaling) just Burgers’ equation, which has no non-trivial
conservation laws, but nevertheless has infinitely many symmetries and is integrable by direct
linearization (i.e. the Hopf–Cole transformation [7, 8]). It is also interesting to note that, after
rescaling f̂ by suitable powers of δ, the shallow water limit δ → 0 can be made. Taking
the limit directly yields f̂ (k) ∼ 1/(δk), which means that (4) becomes the Riemann shock
equation; this is the dispersionless limit of the KdV equation, for which f̂ (k) ∼ δk arises by
first transforming f̂ (k) → f̂ (k) − 1/(δk) before taking δ → 0.

3. Periodic case

The purpose of this section is to describe how the symbolic method and the perturbative
symmetry approach can be carried over to the case of periodic functions with period 2L. For
such a function u(x), by considering the Fourier series

u(x) =
∞∑

n=−∞
un einπx/L,

the Fourier transform is obtained as a sum of Dirac delta functions:

û(k) =
∞∑

n=−∞
unδ(nπ/L − k).

Thus, applying the operator T with symbol if̂ (k) leads to

T (u(x)) = i
∫ ∞

−∞
f̂ (k)

∞∑
n=−∞

unδ(nπ/L − k) eikx dk = i
∑

n

′
f̂ (nπ/L)un einπx/L,

where the symbol
∑′

n denotes the sum from n = −∞ to ∞ with n = 0 excluded in the case
of a principal value integral. Hence the perturbative symmetry approach is applicable in a
periodic domain, by formally replacing u by its Fourier coefficient un, and similarly letting
f̂ (nπ/L) for n ∈ Z take the place of the symbol f̂ (k); the results on the infinite domain are
recovered in the limit L → ∞. However, from an algebraic point of view the integrability
conditions are identical.

To consider the periodic problem without recourse to distributions, it is convenient
to follow [1] and represent the operator T in terms of an integral kernel on the interval
−L � x � L:

T (u(x)) = 1

2L
PV

∫ L

−L

T̃ (x − y)u(y) dy. (23)

From the result of applying the perturbative symmetry approach in the last section, it is clear
that in the periodic case an integrable equation (4) with a skew-symmetric operator T can only
arise from an odd solution of the functional equation (8). In that case the kernel must be given
by the Fourier series

T̃ (x) = i
∑

n

′
coth(nπδ/L) einπx/L (24)

or its limit when δ → ∞. The authors of [1] used this Fourier series to obtain a closed form
expression for the periodic coth transform on (−L,L), which they identified as

T̃ (x) = −2K

π
{Z(Kx/L) + dn(Kx/L)cs(Kx/L)}, (25)
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with Z denoting Jacobi’s zeta function and dn, cs being Jacobian elliptic functions;
the constants K and K ′ are complete elliptic integrals such that K ′/K = δ/L.

Here we should point out that the sum of the series (24) can be written more succinctly.
By using the identities

Z(w) = d

dw
log ϑ4

(
wϑ−2

3

)
, dn(w)cs(w) = d

dw
log

ϑ1
(
wϑ−2

3

)
ϑ4

(
wϑ−2

3

)
(see [18]), it is clear that the expression (25) can be simplified to rewrite (23) as

T (u(x)) = − 1

π
PV

∫ L

−L

u(y)
d

dx
log ϑ1((x − y)π/2L) dy,

using the fact that ϑ2
3 = 2K/π . Alternatively the kernel T̃ (x) can be written as a zeta function

Z
[ 1

1

]
with characteristics [15].

In future work we propose to consider elliptic solutions of the periodic ILW equation of
the form

u(x, t) =
N∑

j=1

F(x − qj (t)) − F(x − qj (t)),

where F is a suitable zeta function. The simplest case N = 1 corresponds to the elliptic
solutions studied by Parker [14] using Hirota’s bilinear method. For arbitrary N the quantities
qj , qj should evolve with time according to the equations of an elliptic Calogero–Moser system
coupled with first-order constraints. This generalizes the results of Case [5], which relate the
algebraic solitons of the Benjamin–Ono equation to rational Calogero–Moser systems. There
are various interesting integrable equations involving the Hilbert transform operator H that
have been classified recently [12], and it would be instructive to consider their solutions and
their analogues when H is replaced by T .
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